Lorentzian stationary surfaces in 4-dimensional space forms of index 2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...

متن کامل

Polar transform of Spacelike isothermic surfaces in 4-dimensional Lorentzian space forms

The conformal geometry of spacelike surfaces in 4-dimensional Lorentzian space forms has been studied by the authors in a previous paper, where the so-called polar transform was introduced. Here it is shown that this transform preserves spacelike conformal isothermic surfaces. We relate this new transform with the known transforms (Darboux transform and spectral transform) of isothermic surface...

متن کامل

Null helices in Lorentzian space forms

In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimun number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space-time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is,...

متن کامل

Biharmonic Hypersurfaces in 4-dimensional Space Forms

We investigate proper biharmonic hypersurfaces with at most three distinct principal curvatures in space forms. We obtain the full classification of proper biharmonic hypersurfaces in 4-dimensional space forms.

متن کامل

Surfaces of constant curvature in 3-dimensional space forms

The study of surfaces immersed in a 3-dimensional ambient space plays a central role in the theory of submanifolds. In addition, Riemannian manifolds with constant sectional curvature can be considered as the most simple examples. Thus, one can think of surfaces with constant Gauss curvature in the Euclidean space R, hyperbolic space H or 3-sphere S as very natural objects of study. Through the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2011

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1331658705